The Theory of Zero-Suppressed BDDs
and the Number of Knight’s Tours

Martin Lobbing*

FB Informatik, LS 11
Univ. Dortmund
44221 Dortmund, Germany
Tel: +49-231-755-2469
Fax: +49-231-755-2047

Olaf Schroer

Philips Dialogue Systems
Weifhausstrafie 2
52066 Aachen, Germany
Tel: +49-241-6003-664
Fax: +49-241-6003-601

Ingo Wegener*

FB Informatik, LS 11
Univ. Dortmund
44221 Dortmund, Germany
Tel: +49-231-755-2777
Fax: +49-231-755-2047

email: {loebbing,olaf,wegener } @ls2.informatik.uni-dortmund.de

Abstract— Zero—suppressed binary decision dia-
grams (ZBDDs) have been introduced by Minato in
[14]-[17]. Here the structural properties of ZBDDs are
worked out and a generic synthesis algorithm is pre-
sented and analyzed. It is proved that ZBDDs can be
at most by a factor n+1 smaller or larger than ordered
BDDs (OBDDs) for the same function on n variables.
Using ZBDDs the best known bounds on the number
of knight’s tours on an 8 x 8 chessboard are improved
significantly.

I. INTRODUCTION

Bryant [4] has introduced ordered binary decision dia-
grams (OBDDs) for the representation and manipulation
of Boolean functions. OBDDs allow better algorithms in
many areas of application like verification, model checking,
fault simulation, test pattern generation, timing analysis
and many more. Several OBDD variants have been intro-
duced and applied, among them ordered functional deci-
sion diagrams (OFDDs) (Kebschull, Schubert and Rosen-
stiel [10]), graph driven BDDs (Gergov and Meinel [7] and
Sieling and Wegener [20]), indexed BDDs (IBDDs) (Jain,
Abadir, Bitner, Fussell and Abraham [8]), edge-valued
BDDs (EVBDDs) (Lai and Sastry [12]), algebraic decision
diagrams (ADDs) (Bahar, Frohm, Gaona, Hachtel, Macii,
Pardo and Somenzi [1]), binary moment diagrams (BMDs)
(Bryant and Chen [5]), and extended BDDs (XBDDs)
(Jeong, Plessier, Hachtel and Somenzi [9]). OFDDs are
based on the Reed—Muller expansion while OBDDs are
based on the Shannon expansion. EVBDDs, ADDs and
BMDs allow integers at the sinks and/or the edges. In
graph driven BDDs the variables do not have to be tested
on all paths in the same order and in IBDDs the variables
can be tested more than once. XBDDs allow some amount
of nondeterminism.

But in all these models all constants (Boolean, integers
or reals) are treated in the same way. Minato ([14]-[17])

*Supported in part by DFG grant We 1066/7-3.

has introduced zero—suppressed BDDs (ZBDDs) for the
efficient representation of Boolean functions f, where the
inputs a such that f(a) = 1 have typically more zeros
than ones. In certain situations O—tests can be suppressed
leading to a saving of storage space. Minato has described
algorithms for set operations like union, intersection, dif-
ference, product and weak—division and successful exper-
iments for cube set representations, fault simulation, tim-
ing analysis and the n—queens—problems.

Here the theory of ZBDDs is developed, interesting
structural properties of ZBDDs are described, efficient al-
gorithms on ZBDDs, in particular a generic synthesis al-
gorithm, are presented and analyzed, the relation between
the OBDD size and the ZBDD size of Boolean functions
is determined and a new application to the open prob-
lem of counting the knight’s tours on 8 x 8—chessboards is
presented.

In Section I OBDDs and ZBDDs are defined and it is
shown that the quasi—-reduced OBDD for f is isomorphic
to the quasi—reduced ZBDD for f with the same variable
ordering.

In Section III it is described which subfunctions of f
have to be represented on each level of reduced and quasi—
reduced ZBDDs for f. Moreover, it is shown how the func-
tions represented at some node and its successors are re-
lated. The structural results of Section 11 and III simplify
the discussion of ZBDDs and the analysis of algorithms
on ZBDDs.

We believe that ZBDDs might have advantages for cer-
tain functions in all types of applications, where OBDDs
are used. Therefore, a generic synthesis algorithm for all
Boolean operators on ZBDDs is presented and analyzed
in Section IV. It turns out that O—preserving operators
like AND, OR and XOR are easier to handle than not
O—preserving operators like NAND, NOR and NXOR. An
operator is called O—preserving if it outputs 0 for the input
consisting of zeros only.

In Section V efficient algorithms for the other impor-
tant operations on BDD like representations, in particular
the replacement of variables by constants or functions, are

presented.

Minato has observed that in certain situations ZBDDs
are “considerably smaller” than OBDDs. In Section VI
it is proved that ZBDDs can be smaller or larger than
OBDDs at most by a factor of n + 1. Examples show that
these bounds are optimal.

Minato [17] used ZBDDs for the computation of the
number of solutions of the n—queens—problem. In Sec-
tion VII the other famous combinatorical chess problem
is considered. A knight’s tour is a legal closed path for
a knight on a chessboard, where each square is visited
exactly once. The existence of knight’s tours on n x n
chessboards for even n > 6 is proved (Conrad, Hindrichs,
Morsy and Wegener [6]). But the computation of the num-
ber of knight’s tours on the 8 x 8 chessboard 1is still a
challenging open problem. The best known upper bound
of 3.019 - 10?2 is improved in Section VII with the help of
BDDs to 7-10', and a new lower bound of 5-10'? is pre-
sented. To our knowledge this is the first combinatorical
result which has been proved for the first time with BDD
tools.

11. ZEro-SurpPRESSED BDDs anp OrpDERED BDDs

The underlying graph structure (the syntax) of ZBDDs
is the same as for OBDDs, but the semantics differ. A BDD
graph G is a directed acyclic graph with at most two sinks
labeled by the Boolean constants 0 and 1. Each inner node
is labeled by one of the Boolean variables z1, ..., z, and
has two outgoing edges one labeled by 0 and the other by
1. The graph has to respect a given variable ordering, we
use Z1,...,&,. Then each edge from an z;—node v (index
of v is i or ind(v) = i) leads to an z;-node, where j > i,

or to a sink whose index is defined as n + 1.

Let G be a BDD graph. If GG is interpreted as an OBDD,
the function f© represented at the node v is defined as fol-
lows. For the computation of fC(a) start at v. At an inner
node labeled z; choose the outgoing edge with label a;.
Then f©(a) is equal to the label of the sink finally reached.
On the other hand, let fZ be the function represented at
v, if G 1s interpreted as a ZBDD. For the computation of
fZ (a) the same path is considered as for the computation
of f(a). But fZ(a) equals the label of the sink only if
a; = 0 for all j, where z; is not tested on the considered
path. Otherwise fZ(a) = 0.

As an example we consider the BDD graph G of Fig.1.
It contains three paths from the source to the 1-sink.
They are labeled by (0,0,0), (0,1,1) and (1,7, 1). Hence,
(0,0,0) and (0,1,1) are mapped to 1, if G is an OBDD
or a ZBDD. The path (1,7, 1) has different meanings for
OBDDs and ZBDDs. In OBDDs a non—tested variable
is interpreted as don’t care, i.e. (1,0,1) and (1,1, 1) are
mapped to 1, if G is an OBDD. In ZBDDs a non—tested
variable is interpreted as 0, 1.e. (1,0,1) but not (1,1,1) is
mapped to 1, 1f G is a ZBDD.

1-edge

Fig. 1. A BDD graph G, the nodes are labeled with the indices

OBDDs contain for each input a computation path and
a path may represent many inputs. In ZBDDs each path
ending in the 1-sink represents exactly one input mapped
to 1.

The following reduction rules (see Fig.2b—d) do not
change the represented function.

Merging rule for OBDDs and ZBDDs: If two nodes
have the same label, the same O—successor and the
same l—successor, they can be merged.

Elimination rule for OBDDs: If the 0O-successor of
some node v is equal to the 1-successor of v, the node
v can be eliminated.

Elimination rule for ZBDDs: If the I-successor of
some node v is the 0-sink, the node v can be elimi-
nated.

Bryant [4] has shown that OBDDs are a canonical form,
i.e. the OBDD of minimal size (for f and a fixed variable
ordering) is unique (up to isomorphism) and can be ob-
tained from each OBDD for f with the reduction rules. In
several papers (e.g. Liaw and Lin [13] and Wegener [22])
also quasi-reduced OBDDs are considered. They are ob-
tained from complete decision trees for f by applying only
the merging rule. It is known that quasi-reduced OBDDs
are a canonical form.

In complete decision trees each variable is tested on
each path from the source to a sink. Hence, the decision
tree representing f as an OBDD also represents f as a
7ZBDD. The property that each variable is tested on each
path also holds for the quasi—reduced OBDD. Hence, the
quasi—reduced OBDD for f also represents f as a ZBDD
and therefore it is also called quasi—reduced ZBDD. We
apply this fact often in this paper.

TT1. STRUCTURAL PROPERTIES oF ZBDDs

OBDDs rely on the Shannon expansion of Boolean func-
tions and OFDDs on the Reed—Muller expansion. In both
cases a simple relation between the function represented
at some node and the functions represented at the direct
successors 18 given in advance. The situation for ZBDDs

S 5

Fig. 2. a) a node and its successors b) merging rule

is different. They are defined by the mode of evaluation
(as in Section IT) or by the reduction rules (as in Minato
[16]). In order to understand the structure of ZBDDs we
describe the expansion on which ZBDDs are based (see
Fig.2a).

Theorem 1: Let f be represented in a ZBDD at an z;—
node v and let g be represented at the 0—successor vy of
v and h at the l-successor v; of v. Then the following
relations hold.

1) g = Ei.ﬁx,:O
ii) h =7 fjo,=1
ii) f=g+2ih3z,=0

Proof: i) and ii) are proved by case inspection.
iii) follows directly from i) and ii). O

With the next result we describe which functions are
represented in quasi-reduced and reduced ZBDDs for f.

Definition 1: A Boolean function f is called 1-simple
with respect to x; if fi,=1 is equal to the constant 0.

Theorem 2: i) The nodes labeled z; in the quasi-
reduced ZBDD for the Boolean function f represent the
different functions 1 ...%i—1fje,za1,... 2;c1=ai,, Where
Ay, ...,a;-1 € {0,]}.

ii) The nodes labeled #; in the reduced ZBDD for
the Boolean function f represent the different functions
.. -Ei—1f|x1=a1,...,:cl_1=al_1a where ay,...,a;_1 € {Oa]}
and fiz,=a,,... .¢i_1=a;_, 18 not 1-simple with respect to ;.

Proof: Let GG be the complete decision tree representing f
as ZBDD. It follows from Theorem 1 that the node reached
for 21 = ay,...,2;_1 = a;_1 represents

Z1...Ti—1fjz1=a1,..wi_1=a,_, - Lhe merging rule prevents
that the same function is represented by more than one
z;—node. This proves i). The elimination rule deletes all
z;—nodes representing functions which are 1-simple with
respect to x;. This proves ii). O

It follows that a ZBDD can be reduced by a levelwise
bottom—up application of the reduction rules, which is pos-
sible in linear time O(|G|) using the bucket sort technique
of Sieling and Wegener [19].

Liaw and Lin [13] and more precisely Wegener [22]
have investigated the OBDD size of almost all Boolean

c) elimination rule for OBDDs

S5l

d) elimination rule for ZBDDs

functions. By our considerations in Section II the results
on quasi-reduced OBDDs also hold for quasi-reduced
7ZBDDs. Examining the fraction of nodes which cannot
be eliminated, it turns out that all the results about the
size of reduced OBDDs contained in [13] and [22] also hold
for reduced ZBDDs.

IV. A GENERIC SYNTHESIS ALGORITHM

The most important operation on BDD structures is the
synthesis. Given a Boolean operator ® on m inputs and
representations Gy, ..., Gy, for fi,..., f, a representa-

tion G for f = ®(f1,..., fm) has to be computed.

The known OBDD synthesis algorithm works
because each node represents functions like
ite(xi, flz;=1, flei=0) and the dte operator com-

mutes with each operator ®. This means that f =
®(ite(mia fl |-’11i=17 fl |$i=0)’ R ite(mia fm|$1=1) fm 171:0)) =
ite(xia ®(f1 Ti=ly- - fm Zz=1)a ®(f1 zi=0y-+) fmliﬂz:U))'

This type of algorithm does not work for other BDD
structures. The Reed-Muller expansion commutes with
XOR but not with AND, OR, NAND or NOR. Becker,
Drechsler and Werchner [2] present examples, where the
AND-synthesis leads to an exponential blow—up of the
OFDD size. The same effect happens for BMDs (Bryant
and Chen [5]). Minato ([14]-[17]) investigates some special
operators without an analysis of the resulting ZBDD size.
We present and analyze a generic synthesis algorithm for
ZBDDs.

Definition 2: A Boolean operator @ : {0,1}™ — {0,1}
is O—preserving if ®(0,...,0) = 0.

The following binary operators are O—preserving: AND,
OR, XOR, Z1z9 and z1Z5. The negations of these oper-
ators are not O—preserving. We present a generic ZBDD
synthesis algorithm for 0—preserving operators. Later we
show how not O—preserving operators can be replaced by
O—preserving ones.

The ZBDD synthesis algorithm is based on a simulta-
neous depth—first traversing of G4, ..., Gp,. The operator
is applied to the Boolean constants, if sinks have been
reached in all GG;. Otherwise some nodes wvy,..., v, are
reached in G1,...,Gm. In G anode v = (v1, ..., vm) with
label ; is created where i = min{ind(v1), ..., ind(vm)} <
n. Its O—successor is computed with a recursive call to

0

the nodes v?,..., v

., Uy, Where U? is the O—successor of v;,

if ind(j) = ¢, and v? = v; otherwise. The 1-successor is
computed with a recursive call to the nodes vi,... v}
where v} is the 1-successor of v;, if ind(j) = i, and the
O-sink of G; otherwise. If GG; does not contain a O-sink, a
dummy 0-sink has to be added. With hashing strategies it
is guaranteed that only one node is created for each tuple
(v1,...,Um). The reduction process can be integrated into

the synthesis process.

Theorem 3: The generic synthesis algorithm works cor-
rectly for O—preserving operators. The size of G 1s bounded
by |G3| - ... |G3,|, where |GF| = |Gi|, if G; contains a 0
sink, and |G| = |G;| + 1 otherwise.

Proof: The statement about the size of G follows from the
fact that G contains only nodes v = (v1,...,vm), where
v; 1s a node of GG; or the dummy 0-sink of G;.

The correctness is proved by induction. The result
is true if v = (v1,...,v,) are sinks. The represented
functions f, fi,..., fm all compute 0, if (ay,...,a,) #
(0,...,0). For the vector a” consisting only of zeros
£(0) = & (f1(a), .., fn(a)):

For the induction step we consider a node v =
(v1,...,vm) with index i in G. Let fi,..., f, be the

,vm and let f be the
function represented at v. We have to prove that f =
®(f1,..., fm). i a, = 1 for some k < i, f(a) = fi(a) =
... = fm(a) = 0. Since ® is O-preserving, the claim fol-
lows for such inputs. In the following ar = 0 for all k < 3.

If the index of v; is equal to 7, the O—successor of v; in
G represents by Theorem 1 g; = Z;fjjs,=0 and the 1-
successor represents hj = Z; fj|s,=1. Moreover, f; = g; +
x;hj)z,=0 by Theorem 1. If the index of v; is equal to k > ¢,
we apply in G the inverse elimination rule and include a
new node v} with index ¢, whose (-successor is v; and
whose 1-successor is the O-sink. The node v} represents
fj, its O—successor represents g; = f; = T; f}z,=0 and its
I-successor represents h; = 0 = T; fjjp,=1. Again f; =
9j + zihj|z=o-

The O-successor of v in G represents by induction
hypothesis ®(g1, .
®(h1,...,hm). By Theorem 1 the node v represents
@91, 9m)+ i (@(h1, ...
that this function equals ®(f1, ..

functions represented at wvq,..

..,gm) and the l-successor represents

’hm))|xl=0' We have to prove

> fm).

~;gm) = ®(fi.f1|zl:0;-~-;fifm|z,:0)

= T; (® (f1|:cl=0) R fm|xl=0))
= Ei(@(fla-“)fm))hc,:O'

The equality () holds obviously, if z; = 0. If z; = 1, it
holds, since ® is O—preserving. The equality (x*) holds,
since the replacement by constants commutes with each
operator.

®(g1, -

Zj (®(h1) B hm))|xi:0

x; (® (Eif”xi:l; . -,fifm|zi:1))|xi:o

2 (@ (filziz1s - Foi=1))

2i (@ (f1,- s m))p,=1 -

The equalities hold, since the replacement of variables

commutes with each operator and since fjj;,=1 is inde-
pendent of z;.

@91,y 9m) + i (®(h1, .. 'ahm))|zl:0
= T (®(f,. .-, fm))|x,=o +z (®(f1,- -, fm’))lib‘i:l
= ®(f1,...,fm).

The Shannon expansion theorem completes the proof. O

The time analysis of the algorithm is easy. Without the
time for the operations on the tables it runs in time propor-
tional to the number of computed v = (vy, ..., vy,). Using
AVL trees as tables the extra factor can be bounded by a
logarithmic factor. In practice one uses hashing strategies
and hopes that the extra factor is a constant. If the reduc-
tion is integrated into the synthesis, the storage space can
be bounded by the sum of the input size and the size of
the “computed table”.

For a not O—preserving operator ® : {0,1}™ — {0,1}
let @ :{0,1}™+1 — {0,1} be defined by

®((1,1, N

S, Gmy1) = @ (a1, ..., Am) D Amyi,

where @ stands for XOR. Then & is by definition 0-
preserving. Moreover,
&(at,...,am,1) = @(as,...

y).

Hence, the ®@-synthesis of G4, ..., Gy, can be replaced by
the @-synthesis of G1,...,Gm and Gone, the ZBDD rep-
resenting the constant function 1 (see Fig.3). This leads
to the following theorem.

Theorem 4: The generic synthesis algorithm can be
used also for the synthesis for not O—preserving opera-
tors (if modified in the appropriate way). The size of the
resulting ZBDD G is bounded by |G}| ... |G},|-(n+1).

Negation is a unary not O—preserving operator. Hence,
Theorem 4 implies that negation may increase the ZBDD
size at most by a factor of n + 1. An example shown in
Fig.3 proves that this bound is best possible. The ZBDD
G4 represents ¢ = T1Zs ...T, with one node, and |G}| =
2. The reduced ZBDD for § = %1 + ...+ z, contains
G5 (n 4+ 1) — 1 = 2n 4 1 nodes.

V. FURTHER ALGORITHMS

For many other problems it is easy to see how they can
be solved efficiently. Minato [16] shows that the number of
satisfying inputs is equal to the number of paths from the
source to the 1-sink and can be computed in time O(|G]).

G

A
Kl

\

Fig. 3. ZBDD Gy represents the constant 1, G; represents
g =T1 T2 T3 Tq, G represents g =11 + x2 + 23 + 74

The equivalence test for ZBDDs is easy, since reduced
ZBDDs are a canonical form. If the ZBDDs may share
nodes (like in SBDDs, see Minato, Ishiura and Yajima
[18]), a simple pointer comparison is sufficient.

The first problem which is more difficult than for
OBDDs is the replacement of variables by constants.

Theorem 5: Let GG be the reduced ZBDD representing f
and let G be the reduced ZBDD representing fj;,=.. Then
G. can be computed in time O(|G|). Moreover, |G1]| <
|G*| and |Go| < |G™| + [IG]/2].

Proof: First we consider quasi—reduced ZBDDs . Then
it is sufficient to replace the ¢-edges leaving xz;—nodes v
by edges to the c—successor of v. This is correct, since this
procedure works for OBDDs and quasi-reduced OBDDs
are quasi-reduced ZBDDs for the same function.

In the general case we first ensure that each path from
the source to a sink contains an x;—node. For this purpose
we consider the edge to the source as an edge starting from
a node with index 0. Let w be a node with index j > 14
which is reached directly by an edge from some node v
with index k < . Then a new node @ is created. Its index
is 4, its O—successor is w and its 1-successor is the 0-sink
(which perhaps has to be created). All edges leading to
w from nodes with an index less than i are redirected to
lead to . Because of the ZBDD elimination rule we have
not changed the function represented at the source.

Now the replacement technique for quasi-reduced
ZBDDs can be applied. If ¢ = 1, all new nodes besides
the 0-sink can be eliminated again. Hence, |G1| < |G*|.

If ¢ = 0, the number of new nodes can be bounded in
the following way. Let ¢ be the number of nodes w in G,
where ind(w) > i. Then by construction |Go| < |G*| +1t.
The number of new nodes is bounded also by the number
of edges leading from some node v, where ind(v) < i, to
some node w, where ind(w) > i. Let s be the number of
nodes, where ind(v) < i. There are 2s edges leaving these
nodes. At least s — 1 of these edges reach other nodes v’,

start

OBONONG

Fig. 4. Construction of quasi-reduced ZBDDs from reduced
ZBDDs, the replacement of all possible edge-types to a node with
index 5.

where ind(v') < i. Hence, the number of additional nodes
is also bounded by s+ 1. Moreover, s+t < |G|. The upper
bound min{s+ 1,¢} is bounded by [|G|/2]. This leads to
the upper bound on |Gg|.

The so—constructed ZBDDs are not necessarily reduced
but they can be reduced in linear time. O

The operation replacement by a constant is quite im-
portant, see e. g. the application of ZBDDs in Section VII.
Also the quantification of variables is based on the replace-
ment by constants. The same holds for the replacement of
variables by functions. The following result follows from
Theorem 3 and Theorem 5.

Corollary 1: The operation replacement by functions
can be performed for ZBDDs in time O(|Gg|2 |G|) and the

size of the resulting ZBDD G} is bounded by 2 |G| |G;|2.

VI. CoMPARING THE SIZE oF OBDDs AND ZBDDs

Minato ([14]-[17]) has shown in many applications that
ZBDDs can be considerably smaller than reduced OBDDs
for the same function (and variable ordering). But how
much can we gain or loose? Becker, Drechsler and Werch-
ner [2] have shown that the size of OBDDs and OFDDs for
a function may differ exponentially (in both directions).
We prove that the reduced ZBDD for f may be at most by
a factor of n+1 smaller than the reduced OBDD for f and
vice versa. The main idea is to construct the quasi—-reduced
ZBDD (OBDD) from the reduced ZBDD (OBDD). This
quasi-reduced ZBDD (OBDD) is also the quasi-reduced
OBDD (ZBDD), see Section 2, and the reduced OBDD
(ZBDD) is not larger than the quasi-reduced one.

Theorem 6: Let GZ be the reduced ZBDD representing
f and let G© be the reduced OBDD representing f. Then

GO < (n+1)IG7] + 1.

Proof: From G% we construct the quasi-reduced ZBDD
representing f (see Fig.4). We add a 0-sink, if not exis-
tent. For each node v with ind(v) = j we add j — 1 nodes
¥1,...,v;—1 whose indices are 1,...,7 — 1. The O-edge
leaving vy leads to vk 41, where v; := v. The 1-edge leav-
ing vg leads to the node with index k+1 created for the 0-
sink. Finally, an edge from w with index ind(w) = i < j—1
to node v is replaced by an edge to vi41. The edge to the
source is considered as an edge from a node with index 0.

For each of the |GZ| nodes of G# and perhaps for the
new 0-sink we have created at most n new nodes. This
quasi—reduced ZBDD is also the quasi—reduced OBDD for
f. The reduced OBDD is obtained with the OBDD reduc-
tion rules. At least the new nodes created for the 0-sink
can be eliminated (see Fig.4). O

The upper bound of Theorem 6 is optimal for the
ZBDD consisting of the 1-sink only. This ZBDD repre-
sents T1 T . .. %, and the reduced OBDD for this function
contains n + 2 nodes. In most cases the upper bound can
be improved, since the number of new nodes created for
a node with index j which is reached directly only from
nodes with index k > ¢ can be bounded by j — i — 1.

Theorem 7: Let G be the reduced OBDD representing
f and let G be the reduced ZBDD representing f. Then

IG7] < (n+1)|G°.

Proof: The proof is quite similar to the proof of Theo-
rem 6. The difference is that it is not necessary to create
a 0-sink and that both edges leaving vy lead to vgy;. O

The upper bound of Theorem 7 is optimal for the OBDD
consisting of the 1-sink only, since the reduced ZBDD for
the constant 1 contains n 4+ 1 nodes.

One might think that it is possible to save a factor ©(n)
of the nodes only if the given reduced OBDD or ZBDD
has at most linear size. But examples like a multiplexer
circuit show that functions with OBDD size ©(n) have
7ZBDDs of size ©(n?) and vice versa.

VII. ON THE NUMBER OF KNIGHT’S TOURS

In this section we discuss an application of our ZBDD
theory. The two most famous combinatorical chess prob-
lems are the n-queens problem and the knight’s tour prob-
lem. Minato [17] has solved the n-queens problem up to
n = 13 using ZBDDs and a coding of the problem in
the unate cube set algebra. His approach contains many
nice ideas, but the obtained results are not new. The n-
queens problem can be solved easily up to n = 16 with
a backtracking algorithm. This seems to be difficult with

Minato’s approach, since the size of the ZBDDs grows “al-
most proportional with the number of solutions”, so one
can expect more than 40 - 10° nodes.

We consider the knight’s tour problem on n x n chess-
boards. The undirected knight’s graph contains n? vertices
representing the squares of the chessboard and the edges
describe the legal moves of a knight. A knight’s tour is a
closed path visiting each square of the chessboard exactly
once, i.e. it is a undirected Hamiltonian circuits on the
knight’s graph. Knight’s tours are a challenging problem
considered by famous mathematicians like Euler, Legendre
and Vandermonde during the last 400 years. It is known
that they exist if and only if n > 6 and n is even (Conrad,
Hindrichs, Morsy and Wegener [6]). Is is easy to enumer-
ate the 9,862 knight’s tours on 6 x 6 chessboards. But it
is still a challenging problem to determine or estimate the
number of knight’s tours on 8 x 8 chessboards. Tt is known
that more than 10° tours exist and one expects that the
number of knight’s tours is much larger. Backtracking al-
gorithms could not increase the lower bound much, since
the number of deadlocks is too large. The previously best
known upper bound of size 3.019 - 1022 is due to Kyek,
Parberry and Wegener [11].

Our direct attempts to determine the number of knight’s
tours on 8 x 8 chessboards with BDD representations failed
because of lack of storage space. A well-known relaxation
for the traveling salesman problem (also a Hamiltonian
circuit problem) is the assignment problem for directed
graphs. A solution of the assignment problem is a directed
subgraph, where each vertex has outdegree 1 and indegree
1. Such a graph is a cycle covering, since it consists of
disjoint directed cycles covering all vertices. In the fol-
lowing we investigate the directed version of the knight’s
tour graph, where each undirected edge is replaced by two
directed edges.

Theorem 8: The number of cycle coverings of the di-
rected knight’s graph for 8 x 8 chessboards is equal to a?,
where a = 2,849,759,680, i. e. o? &~ 8.1 - 108,

Proof: The knight’s graph is a bipartite graph, since the
knight can move only from a white square to a black one
and vice versa. Each cycle covering can be partitioned into
n?/2 = 32 vertex disjoint edges starting at the 32 white
squares and reaching the 32 black squares and 32 vertex
disjoint edges from the black to the white squares. Let a
be the number of sets of 32 vertex disjoint edges from the
white to the black squares. Because of the symmetry of the
knight’s graph « is also the number of sets of 32 vertex
disjoint edges from the black to the white squares. Since
each combination leads to a cycle covering, we conclude
that a2 is the number of cycle coverings.

Our task is to determine «. Each white square of the
knight’s graph has 2, 3, 4, 6 or 8 direct successors. We
describe the chosen successor with 1, 2 or 3 Boolean vari-
ables. Altogether 78 Boolean variables are sufficient. We
design a circuit which decides whether the variables de-

scribe 32 vertex disjoint edges from the white to the black
squares. The circuit tests whether for each black square
w there is one possible predecessor v such the variables
belonging to v describe the edge to w. The circuit is then
transformed with the generic synthesis algorithm into a
7ZBDD. The chosen variable ordering tests the variables
for each square blockwise and the white squares are or-
dered rowwise from left to right. The resulting ZBDD
has 406,660 nodes, the OBDD 598,472, but the number
of nodes generated during the synthesis was nearly the
same. This is the reason why some of the following results
were obtained using OBDDs. The Sat-Count algorithm
finally computes the number of satisfying inputs. |

The computation of a took 6.5 minutes (SUN 670/140,
128MB) with ZBDDs, while a backtracking algorithm
took more than 30 days. Theorem 8§, the determination
of the number of cycle coverings for the 8 x 8 chessboard,
seems to be the first combinatorical result which first has
been obtained with BDD like representations and where
all other known techniques are much slower.

A knight’s tour is a cycle covering consisting of exactly
one undirected cycle. Each undirected knight’s tour leads
to two directed cycle coverings, so we may fix for one
corner how we pass the corner. We take the upper right
corner, a black square. Most of the cycle coverings con-
tain more than one cycle, so we improve the bound by
excluding all cycles of length 2 containing one of the four
squares in one of the corners. These squares correspond to
vertices in the knight’s graph with lowest degree and have
the largest probability to lie on a cycle of length 2. Then
we distinguish the 223 possibilities how we pass through
the 15 squares, 8 of them are white and 7 black.

If a possibility is fixed, we compute the number of cycle
coverings with moves starting at white squares, containing
the fixed moves for the 8 white squares and not contain-
ing the moves which would result in a cycle of length 2 in
combination with a move from one of the 7 black squares.
This number is multiplied by the number of cycle cover-
ings for black squares computed in the same manner. To
fix the edge (v, w) is equivalent to replacing the variable
representing the edge starting at » by that constant which
indicates that the edge leads to w. At the end, we sum up
all these possibilities, which leads to the following result:

Theorem 9: The number of
tours on 8 x 8 chessboards

697,825,558,035,068.

undirected knight’s
is bounded above by

Using this technique, the bound cannot be improved
much more. The number of possible moves on the 16 cho-
sen squares is already so large that it took days to compute
the sum of all cycle coverings.

We are also interested in improving the lower bound.
All known backtracking algorithms suffer from the fact
that they run deep into deadlocks, in which they spend
much time without finding a solution. There are heuristics

A s ¢ o £ F o m E§2 NI A7
5 ’ >

X I 17

1 K> 5 5% Y\ O
6 4?\/\/\ V Ssﬁ\i«/x% xx</v\§
s </§‘/\ I x X'XXXSfT X
4 v §<§/ N 5stx’gx X [x [x
3 |~ AN J X XX&QX S’t\TX'
1 s ,
TP SN

Fig. 5. An example of a knight’s tour

like the one from Warnsdorff [21] which can produce many
solutions quickly, but they need as much time as the naive
algorithm when all “simple” solutions are found.

So we tried to divide the problem. We take an 8 x 5
board, in the following called a “half board”. Two of these
half boards result in an 8 x 8 board, if they overlap in the
rows 4 and 5. We partition the squares in three sets, one
for the lower half board (L), one for the upper (U) and
one for the middle (M). A knight’s tour can only switch
from one half board to the other, if a square in the middle
is visited. For a fixed knight’s tour M is partitioned into
four sets: Let S be the set of squares where the knight
enters the lower half board and 7" the set where it leaves it.
Moreover, let X (resp. X') be the set of squares where the
knight remains on the lower (resp. upper) half board. As
an example, the left side of Fig.5 shows a random knight’s
tour. On the right side the partition of this tour in two
half boards is presented. The squares in the overlapping
area are marked with the sets they belong to.

In a natural way, each tour is divided into 2k (1 <k <
8) segments, each lying completely on one half board. We
look at one half board, say the lower one. The knight’s
tour visiting all squares in L U S W T U X exactly once
defines a bijective function f: S — T. Our task will be to
compute the number ¢(f) of tours representing the same
function f, which are different on the lower half board.

The tour, we looked at, defines another bijective func-
tion f’ on the upper half board. Here the board is entered
at a square from 7T and left at a square from S. Each
square in UUT U S U X with X' = M\ (SUTUX) is
visited and the function described is f' : T'— S.

The composition of these two functions f'o f: S — S
represents a permutation over S. A tour visiting the
squares in S in the order s;,,s;,,.. describes al-
ways the permutation (i1, 42, . . ., i), regardless of the path
between these squares. Notice that all permutations de-
scribed by knight’s tours consist only of one cycle of length
k in the sense that the original order is obtained the first

Sy,

time only after a k—times repetition of the permutation.
We say that in this case f’ o f builds one cycle. A permu-
tation with two or more cycles represents cycle coverings
of the complete board which also have two or more cycles.

To compute the number of knight’s tours, we proceed
as follows. We fix the sets S, T' and X and sum up the
tours over all possible combinations. Analogously to the
backtracking algorithm we take two OBDDs, one rep-
resenting the cycle covering for white squares of a half
board, the other for the black squares. There are 40 (non
Boolean) variables for the 8 x 5 squares of a half board.
For the squares in the overlapping area (rows 4 and 5, set
M), there is an extra coding which describes the possi-
bility that the knight leaves this square to the other half
board (square belongs to T' or X). Additionally there is
one Boolean variable introduced for each square in M,
which describes that the knight enters this square from the
other half board; the square belongs to S or X. It is easy
to compute OBDDs respecting the given restrictions, we
only have to substitute some variables by constants. The
backtracking algorithm keeps track of the path segments
connecting S and T'. This leads to the function f described
before, but we only count the possibilities for each func-
tion e(f). Analogously to this procedure, we count the
possibilities for each function f’ on the other half board.
The only remaining task is to check, which combinations
of f and f’ lead to one cycle, representing a knight’s tour,
and which lead to more cycles, representing only a cycle
covering. A legal combination of f and f’ then stands for
e(f) - ¢(f') different tours, since each cycle covering for
f can be combined with each for f’, always resulting in
a tour. We sum up these numbers over all possible sets,
resulting in the number of tours on an 8§ x 8 board. We
ran the algorithm on some computers and in 4 weeks they
completed about a quarter of the search space. This led
us to the following lower bound, which is not too far from
the upper bound of approx. 7-10'.

Theorem 10: The number of undirected knight’s tours
on & x 8 chessboards is bounded below by 5 - 1012,

The precise result will be available soon.

REFERENCES

[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D.
Hachtel, E. Macii, A. Pardo and F. Somenzi: Al-
gebraic decision diagrams and their applications.
ICCAD, pp. 188-191, 1993.

[2] B. Becker, R. Drechsler, and R. Werchner: On the
relation between BDDs and FDDs. LATIN ’95, to
appear in LNCS, April 1995.

[3] K. S. Brace, R. L. Rudell and R. E. Bryant: Efficient
implementation of a BDD package. 27th DAC, pp.
40-45, 1990.

[4] R. E. Bryant: Graph-based algorithms for Boolean
function manipulation. IEEE Trans. on Computers

35, pp. 677-691, 1986.

[5] R. E. Bryant and Y.-A. Chen: Verification of arith-
metic functions with binary moment diagrams. 32nd
DAG, 1995.

[6] A. Conrad, T. Hindrichs, H. Morsy, and I. Wegener:
Solution of the knight’s Hamiltonian path problem on
chessboards. Discrete Applied Mathematics 50, pp.
125-134, 1994.

[7] J. Gergov and Ch. Meinel: Efficient analysis and ma-
nipulation of OBDDs can be extended to FBDDs.
IEEE Trans. on Computers 43, pp. 1197-1209, 1994.

[8] J. Jain, M. Abadir, J. Bitner, D. S. Fussell and J. A.
Abraham: IBDDs: An efficient functional representa-
tion for digital circuits. EDAC, pp. 440-446, 1992.

[9] S.-W. Jeong, B. Plessier, G. Hachtel and F. Somenzi:
Extended BDDs: Trading off canonicity for struc-
ture in verification algorithms. ICCAD, pp. 464-467,
1991.

[10] U. Kebschull, E. Schubert and W. Rosenstiel: Multi-
level logic synthesis based on functional decision di-
agrams. EDAC, pp. 43-47, 1992.

[11] O. Kyek, I. Parberry and I. Wegener: Bounds on the
number of knight’s tours. Tech. Rep. 555, Univ. Dort-
mund, 1994

[12] Y.-T. Lai and S. Sastry: Edge-valued binary decision
diagrams for multi-level hierachical verification. 29th
DAC, pp. 608-613, 1992.

[13] H-T. Liaw and C.-S. Lin: On the OBDD represen-
tation of general Boolean functions. IEEE Trans. on
Computers 41, pp. 661-664, 1992.

[14] S. Minato: Fast generation of irredundant sum-of-
products forms from binary decision diagrams. Proc.
Synthesis and Simulation Meeting and International
Interchange SASIMI, pp. 64-73, 1992.

[15] S. Minato: Fast weak-division method for implicit
cube representation. Proc. Synthesis and Simulation
Meeting and International Interchange SASIMI, pp.
423-432, 1993.

[16] S. Minato: Zero-suppressed BDDs for set manipula-
tion in combinatorial problems. 30th DAC, pp. 272-
277, 1993.

[17] S. Minato: Calculation of unate cube set algebra using
zero-suppressed BDDs. 31st DAC, pp. 420-424, 1994.

[18] S. Minato, N. Ishiura and S. Yajima: Shared binary
decision diagrams with attributed edges for efficient
Boolean function manipulation. 27th DAC, pp. 52—
57, 1990.

[19] D. Sieling and T. Wegener: Reduction of OBDDs in
linear time. Information Processing Letters 48, pp.
139-144, 1993.

[20] D. Sieling and 1. Wegener: Graph driven BDDs—a
new data structure for Boolean functions. Theoretical
Computer Science 143, 1995.

[21] H. C. Warnsdorff: Des Rosselsprunges einfachste und
allgemeinste Losung, Schmalkalden, 1823.

[22] 1. Wegener: The size of reduced OBDDs and optimal
read-once branching programs for almost all Boolean
functions. IEEE Trans. on Computers 43(11), pp.
1262-1269, 1994.

