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Abstract.

We describe a computation that determined the number of knight's tours of a

standard chessboard. We also verify Knuth's count of tours with a symmetry. The

total number of undirected tours is 13,267,364,410,532 and the number of equivalence

classes under rotation and re
ection of the board is 1,658,420,855,433.

1. Introduction.

A knight's tour is a hamiltonian cycle in the graph de�ned by legal knight's moves

on a chessboard. We only consider tours that are cycles, and do not distinguish be-

tween a tour and its reverse. A recent paper [3] describes an elegant method that can

solve the di�cult problem of determining the total number of knight's tours. Unfor-

tunately, the implementation of the algorithm was performed incorrectly, leading to

the wrong answer. The long task of repeating the computation is underway at the

time of writing. Nevertheless, the desirability of independent veri�cation is clear, and

that is the purpose of this note.

2. Counting all tours.

We will explain our method using the same tour as used in [3]. That tour is shown

in Figure I on the left, and on the right it is broken into two pieces with the steps

crossing the central line deleted. The subgraph of the tour induced by the squares in

the lower half of the board consists of a set of paths, some of them possibly trivial.

That set of paths is called the lower half-tour of the tour. The lower half-tour in

Figure I consists of 6 disjoint paths, including the trivial paths in b4, f4 and h4.

More generally, we will use the expression lower half-tour to be a set of (possibly

trivial) vertex-disjoint paths whose vertex-set is the lower half of the board, whose

edges are legal knight's moves, and whose endpoints lie in ranks 3 and 4.

An upper half-tour is de�ned similarly. In Figure I, the lower and upper half-tours

are shown on the right.

The path structure of a half-tour is the set of pairs of endpoints of the paths

comprising it. For the lower half-tour in Figure I, the path structure is fa4-b3, b4-b4,
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Figure I. A knight's tour and its two induced half-tours.

c4-d3, f4-f4, g4-f3, h4-h4g. The order in which the two endpoints of each path are

written is immaterial.

Lemma 1. The number of tours which induce a particular pair of upper and lower

half-tours depends only on the path structures of the half-tours.

Proof. To complete a pair of half-tours into a tour, we must add knight steps across

the middle line, joining endpoints of paths in the lower half-tour to endpoints of paths

in the upper half-tour. The number of ways of doing this successfully depends only

on the positions of the endpoints of the paths in the two half-tours, and on which

of those endpoints belong to the same path. This information is precisely the path

structure.

The �rst step in our computation was to �nd all half-tour path structures, and

the number of half-tours corresponding to each. This was achieved by a standard

back-track algorithm in about 6 hours. There are altogether 70433448 half-tours,

having 7934470 di�erent path structures. There are between 1 and 5680 half-tours

with each path structure.

In order to complete the computation, we need to consider each possible pair of

path structures for the upper and lower half tours, and determine the number of tours

that induce them. However, the number of such pairs is much too large as yet so we

do a further grouping of cases.

The type of a lower half-tour is a pair (a; b), where a = a1; a2; : : : ; a8 and b =

b1; b2; : : : ; b8. The values a1; a2; : : : ; a8 are, reading across rank 4: 0 for the internal

vertex of a path, 1 for the endpoint of a non-trivial path, and 2 for a trivial path.

The values b1; b2; : : : ; b8 contain the same information for rank 3. The lower half-tour

of Figure I has type ((1; 2; 1; 0; 0; 2; 1; 2); (0; 1; 0; 1; 0; 1; 0; 0)).
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The type is clearly a function of the path structure. Altogether there are 453741

possible types for half-tours, with 6357 values of a and 1296 values of b occurring.

A particular tour has a pair of types (aL; bL); (aU ; bU) for its lower and upper

half-tours. Whether an arbitrary such pair of types corresponds to any tours can be

very often be determined in the negative by examining the pair (aL; bU), as all of bU

must be accounted for by knight steps between rank 4 and rank 6 while obeying the

limits imposed by aL. If there is at least one such set of knight steps, we call aL and

bU compatible. Similarly for (aU ; bL).

We are now able to describe the remainder of the computation.

Consider each pair of types (aL; bL); (aU ; bU) such that (aL; bU) and (aU ; bL) are

compatible. Some of these are equivalent under horizontal or vertical 
ips of the

board or their product; we selected the lexicographically least from each equivalence

class and calculated a multiplicity (1, 2 or 4) to compensate.

For each of the remaining pairs of types (aL; bL); (aU ; bU), we determined all

possible ways of choosing a set of knight steps between ranks 3 and 5, 4 and 5, or 4

and 6 to match these types. (The total number of such sets for the entire computation

was about 361 million.) Finally, for each such set of steps, each path structure SL

with type (aL; bL), and each path structure SU with type (aU ; bU), we tested whether

the union of the three consisted of a single circuit. If yes, we had identi�ed a collection

of tours with cardinality equal to the product of the number of half-tours with path

structure SU , the number of half-tours with path structure SL, and the multiplicity

de�ned in the previous paragraph.

This �nal part of the computation was quite expensive, taking 232 hours on a

mixture of Sun workstations. However, this time is quite small compared to the time

required for the method described in [3]. The result was as stated in the Abstract.

Equivalence classes.

It was pointed out by Knuth [2] that the only symmetry of an 8 � 8 board

which may preserve a knight's tour is a rotation by 180 degrees. This is an easy but

interesting exercise that we will leave for the reader. Knuth further reported a count

of 608,233 equivalence classes of such symmetrical tours, each such class containing

4 tours. Since all other equivalence classes contain 8 tours, we can calculate the total

number of equivalence classes to be the number stated in the Abstract.

Is it correct?

Every computer programmer knows that errors in programming or execution can

escape the most rigorous checking. Although we feel con�dent our result is correct,
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independent veri�cation is needed for practical certainty. Hopefully, that veri�cation

will be provided when the rerunning of [3] is complete. As a partial check of our result,

we ran it all again in left-right mirror image, obtaining the same result. We also

applied the method of Knuth [1] to estimate the total number of tours by performing

random probes of an exhaustive search tree, obtaining an estimate close to our answer.

Finally, we veri�ed Knuth's count of 608,233 classes of symmetric tours using a

simple backtrack program that ran for �ve minutes.
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